Reduction of Order

Introduction:

We know the general solution of

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0 \tag{1}
\end{equation*}
$$

is

$$
y=c_{1} y_{1}+c_{2} y_{2} .
$$

Suppose $y_{1}(x)$ denotes a known solution of (1). We assume the other solution y_{2} has the form $y_{2}=u y_{1}$.
Our goal is to find a $u(x)$ and this method is called reduction of order:

Example 1:

Given $y_{1}=e^{x}$ is a solution of $y^{\prime \prime}-y=0$, find a second solution y_{2} by the method of reduction of order.

Solution:

If $y=u(x) y_{1}(x)=u(x) e^{x}$, then

$$
y^{\prime}=u e^{x}+e^{x} u^{\prime}, y^{\prime \prime}=u e^{x}+2 e^{x} u^{\prime}+e^{x} e^{\prime \prime}
$$

And

$$
y^{\prime \prime}-y=e^{x}\left(u^{\prime \prime}+2 u^{\prime}\right)=0
$$

Since $e^{x} \neq 0$, we let $w=u^{\prime}$, then

$$
\begin{gathered}
w=c_{1} e^{-2 x}=u^{\prime} \\
u=-1 / 2 c_{1} e^{-2 x}+c_{2}
\end{gathered}
$$

Example 1 : "cont."

Thus

$$
\begin{equation*}
y=u(x) e^{x}=-\frac{c_{1}}{2} e^{-x}+c_{2} e^{x} \tag{2}
\end{equation*}
$$

Choosing $c_{1}=0, c_{2}=-2$, we have $y_{2}=e^{-x}$.
Because $W\left(e^{x}, e^{-x}\right) \neq 0$ for every x, they are independent.

General Case

Rewrite (1) as the standard form

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{3}
\end{equation*}
$$

Let $y_{1}(x)$ denotes a known solution of (3) and $y_{1}(x) \neq 0$ for every x in the interval.

If we define $y=u y_{1}$, then we have

$$
\begin{aligned}
& y^{\prime}=u y_{1}^{\prime}+y_{1} u^{\prime}, y^{\prime \prime}=u y_{1}^{\prime \prime}+2 y_{1}^{\prime} u^{\prime}+y_{1} u^{\prime \prime} \\
& y^{\prime \prime}+P y^{\prime}+Q y \\
& =u[\underbrace{y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}}_{\text {zero }}]+y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0
\end{aligned}
$$

General Case

This implies that

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0
$$

or

$$
\begin{equation*}
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) 2 w=0 \tag{4}
\end{equation*}
$$

where we let $w=u^{\prime}$.
Solving (4), we have

$$
\frac{d w}{w}+2 \frac{y_{1}^{\prime}}{y_{1}} d x+P d x=0
$$

$$
\ln \left|w y_{1}^{2}\right|=-\int P d x+c \quad \text { or } \quad w y_{1}^{2}=c_{1} e^{-\int P d x}
$$

General Case

then

$$
u=c_{1} \int \frac{e^{-\int P d x}}{y_{1}^{2}} d x+c_{2}
$$

Let $c_{1}=1, c_{2}=0$, we find

$$
\begin{equation*}
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}(x)} d x \tag{5}
\end{equation*}
$$

Example 2:

The function $y_{1}=x^{2}$ is a solution of

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

Find the general solution on $(0, \infty)$.

Solution:

The standard form is

$$
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0
$$

From (5)

$$
y_{2}=x^{2} \int \frac{e^{3 \int d x / x}}{x^{4}} d x=x^{2} \int \frac{x^{3}}{x^{4}} d x=x^{2} \ln x
$$

The general solution is

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

