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Reduction of Order

Introduction:

We know the general solution of 

(1)

is y = c1y1 + c2y2. 

Suppose y1(x) denotes a known solution of (1). We assume the 

other solution y2 has the form y2 = uy1.

Our goal is to find a u(x) and this method is called reduction of 

order. 
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Example 1: 

Given y1 = ex is a solution of y– y = 0, find a second solution y2

by the method of reduction of order.

Solution:
If y = u(x) y1(x) = u(x) ex, then 

And 

Since ex  0, we let w = u, then
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Example 1 : “cont.”

Thus

(2)

Choosing c1 = 0, c2 = -2, we have y2 = e-x. 

Because W(ex, e-x)  0 for every x, they are independent.
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General Case

Rewrite (1) as the standard form

(3)

Let y1(x) denotes a known solution of (3) and y1(x)  0 for every 

x in the interval.

If we define y = uy1, then we have
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General Case

This implies that 

or

(4)

where we let w = u. 

Solving (4), we have 

or
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General Case

then

Let c1 = 1, c2 = 0, we find

(5)  
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Example 2:

The function y1= x2 is a solution of 

Find the general solution on (0, ).

Solution:

The standard form is 

From (5)

The general solution is  
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